9 336

UNCLASSIFIED CCS-RR 339 NO®@14-86-C-0398

CONE RATIO DATA ENVELOPHENT ANALYSIS AND
TI-OBJEC IVE_PROGRAMMINGCU) TEXHS UNIY AT IUSTII
TER FOR CYBERNETIC STUDIES CHARNES ET




o

E

m
) — 4
e
w ; | 5
“ ‘0‘ Eu: -‘
= i8

R

E
O
| G
o

H
| . MICROCOPY RESOLUTION TEST CHART
NATIONAL aunuu OF stmmos xm—A

AN W

nom AT

‘_ } '
p L4
LA "i‘ai:\\,;
e , ”

A

s
et

‘D‘g (0.\.. . ” . )
\ Q‘s‘ 0 l ‘ .' ‘, . —— i .
o " o "'zo'*‘-'? ‘io‘3: ,:;"’w o

' .0'(.

i' !g ¢§f i..\' l”.’ ':".'
,i v LR l""l}” '. 2 “'. 4 z,l't‘ 0'4 : 6’."‘. .‘ . 0 l} 1\“:'::0":3"
. ' '

"""?‘.D ohly
AN )
L2 } .l’ﬂc

v
PR




@

Research Report CCS 559

CONE RATIO DATA ENVELOPMENT ANALYSIS
AND MULTI-OBJECTIVE PROG RAMMING

by

A. Charnes
W.W. Cooper

Q.L Wei* !
Z.M. Huang |

CENTER FOR
CYBERNETIC
STUDIES

The University of Texas

DTI c * Austin,Texas 78712

ELECTEG
\, MAY 1 1108733

Approved for public releass
Distribution Unlimited

g_rszn;gvﬂowmmmj




©

Research Report CCS 559

CONE RATIO DATA ENVELOPMENT ANALYSIS
AND MULTI-OBJECTIVE PROG RAMMING

by

- A.Charnes
W.W, Cooper
Q.L.Wei*
- Z.M. Huang

——— SV
January 1987 !_d:, B e

2]
&bh'-

MAY 1 11987

*The People’s University of China in Beijing D

-t

- This research was partly supported by ONR Contracts N00014-86-C-0398 and NO0014-82-K-
0295, and National Science Foundation Grants SES-8408134 and SES-8520806 with the
Center for Cybernetic Studies, The University of Texas at Austin. Reproduction in whole or in part
- is permitted for any purpose of the United States Government.

DISTRIBUTION STATEMENT A

Approved for public release;
% - Distribution Unlimited

CENTER FOR CYBERNETIC STUDIES
A. Charnes, Director

College of Business Administration, 5.202
The University of Texas at Austin
Austin, Texas 78712-1177
(512) 471-1821

A N S s S S A G S O A O S G A W WO AU R LG 5 s '.h"‘u.Ja t"p ) t‘:‘i A A A .M.?" oL LN S M Py PR NG N L LSO SN



— ¥

A new "cone-ratio

o

ABSTRACT

Data Envelopment Analysis model which

substantially generalizes the CCR model and the Charnes-Cooper

Thrall approach characterizing its efficiency classes is herein

developed and studied.

arbitrary closed convex cones for the virtual multipliers as well as

It allows for infinitely many DMU's and

the cone of positivity of the vectors invelved. Generalizations of

linear programming and polar cone dualizations are the analytical

vehicles employed)
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1. Introduction
We develop the following new “cone-ratio” DEA mode! which substantially generalizes
the CCR mode! [3] as well as the approach of Charnes, Cooper and Thrall [8] to characterizing

its efficiency classes:

- Max uTyyo / vxjo
(C2wH) st. vIX-uTVy eK
vey, uel (V=g ,U=0@)

where

V cE.Mis aclosed convex cone, and Int V = O.

U cE.S is aclosed convex cong, and Int U = 0.

K cEP is aclosed convex cone, and

S

]
where K* = {k| Kk <0, ¥k €K} Is the “polar cone” of the sot K.

6y =(0,..., 0, 0,...0Te-K" j=1,...,n,

X=[xy,... Xy] is anmxnmatrix.
Y=[yy, ..., Yyl 1sansxnmatrix
X) Is the input vector of DMUj, x; € Int (-V™).

y; is the output vector of DMUy, yj € Int (-U™).

We shall require the following facts about acute cones. Cone U is said to be an "acute”
cone If there exists an open half-space

H=(u alu> 0}
such that U c HU (0}, where U Is the closure of U. It is easy to prove the following results

(1) Int U™ =0 If and only If U Is an acute cone (See [13]).

(11) when V is an acute cone, Int V* = {v: vIv <0, Yv e V, v = 0) (See [13]).

(111) When V is a closed convex cone and Int vV = @, V*[1(-v") = {0).




InFact, since (V*)* =V and Int V=0, V" is an acute cone. Hence there exists an open

half-space H = {u; aTu> 0} such that

v*cHU(0)
Namely

alv™ > O for all nonzero v" € V", 1
30

alp™ <O for all nonzero p* € - v*. (2)

Combining (1) and (2), we have
v* N (-v) = {0}
We can get v"xi0 > 0 from x;, € Int (-vMandveV,v =0
Employing the Charnes-Cooper transformation of fractional programming (2],
w=tv, p-=tu, tv'xjo =1
we obtain the following pair of dual convex programs as fn Ben-fsracl, Charnes and Kortanck
[12).
Vp =max ply,
(P) st wiX-uTvYek,
WTXJO = I'
wev, peu
and
vp=miné
(D) st XA-6xjo€ V",
-YA +yjo€U”,
A e K~
Since §; € - K", we can get KC E,". Therefore
Vp = max plyj < wixyo = 1.

Definition I: Dl‘1UJo Is said to be "DEA-efficient” If there exists an optimal solution (w?, uo)

of program (P) such that




and

HoTyjo = 1

woelntVv, noeintu.

m

Definition 2: Dmlo is sald to be "weak DEA-efficient” If there exists an optimal solution

(w9, no) of program (P) such that

POTUJO =1

The pair of dual programming problems (P) and (D) constitute a mode! in which convex

cones are used to measure the efficiency of DMU's (In the appendix, we present the dual theorem

concerning the dual programming problems (P) and (D).) In this paper, we establish the

cquivalence of DEA efficient solutions and nondominated solutions of multiobjective

programming (VP) (see section 2). We also discuss the “projection” of decision making units

onto the efficiency surface and the existence of DEA efficiency of DMUs (see section 3).

Letv=EM U=E,SandK =E,N. The pair (P) and (D) ts then the CCR mode! [3]

and

(P1)<

ﬁ/m = max ply;,

st. wIX-plvo,
wixjo= 1.

L w, H20.

r

V|_)| =min 6§

(D1 )ﬁs.t. XA = 6%6 € O,

-?A + glo ‘ O,

\_ A20.

If we set K=E,N the pair (P) and (D) becomes

g : ' TSI
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(Upg = max Ty,
(P2)<s.t. wTX - puTy 20,

wev,pueu
L K
. and

(V-D2 =min 6

(D2)4st. XA -6xj € V",

‘V}\ + y]o € U',

L a0

In (P2), the more general conditions w € V, i € U replace the non-negativity conditions of the
CCR model.

If weset V=E,M U=E,S, we get the pair (P) and (D) as
Vp3 = max ply;q

(P3H<st. wiX-uTy ek,

wixgo =1,
w, u20.
and
(‘
Vpz =min g

(D3)<s.t. XA =04 €O,

-YA + 450 €0,

L,_ A€ -K".
In (D3), we have A € -K ™ which replaces and generalizes the conical hull conditions about the

production possibility set in the CCR mode! [6].
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2. DEA Efficiency (or Weak DEA Efficiency) and Nondominated
Solutions of Multiobjective Programming Problems

Consider the multiobjective programming problem

vemin(fy (Y, oo, T (G U), Ty (W), L0, Frpes (YD)
(Vp)
s.t. X, yYeT

-

where

T =((x, Y :(x,y) € (XA, YA) + (-V"*, U"), A e-K"}

Is the production possibility set (It {s easy to show that T is a convex cone). Also

Xk, 1<k gm,
fk(x,g) =
“Y-mm>» m+1lgsk<m+s

as in C2G52, where

X=Xy, o X, X

g’(g‘,...,gr,...,gs)r.
Since §; ¢ - K™, we have the input-output vector patrs xpype T, j= 1., n.
Let

F(x, ) =(Fy (X, ), ..., Tmag(x, ynT.

Definition 3. (x;q Yjo) € T Is said to be a nondominated solution of the (VP) associated

with v* x U™ if there exists no (x, y) € T such that

[, y) € 1 (x50, Yjo) + (V™, U™), (x, ) = (x), yjo)

Namely, there exists no (x, y) € T such that
(X, -y) € (5o, =yjo) + (V¥, U™), (x, y) = (X0, Yjo)

Definition 4 (x4, Yjo) € T Is sald to be a nondominated solution of (VP) assoclated with

Int V™ x Int U™ if there exists no (x, y) € T such that
f(x, y) € f(xjo, Yjo) + (Int v, Int U™)

Namely, there exists no (x, y) € T such that

(X, -Yy) € (X}, =Yjo) * (INt V¥, Int U™)




In this section, we will study the relations between DEA efficiency (or weak DEA
efficiency) of DMU's and nondominated solutions of (VP) associated with V* x U™ (or
Int V™ x Int U™),

Let

S={xpyps J=1,...,n

§={(XA, VA): Ae-K¥)

T ={(x, y):(x, y) e (XA, YA) + (-V*, U"), Ae -K"}
Lemmma |. Let (w9, u0) be an optimal solution of (P), and p°TgJO =1. Then for an
arbitrary (x,y) € T we have

wolx - yoly 0 - Wol,(jo - POTUjo-

Proof: Since pOTgJo = 1, we have

WOTx g = uoTyo = 0
For an arbitrary (x, y) € S there exists A € -K™ such that
(x, y) = (XA, YN
Since wolX - poTY e K, then we get
wOTx - 0Ty = woTXx - poTyA = (WOTX - poTy) a2 O
For an arbitrary (x, y) € T, there exists A € -K", v* ¢ - v*, u™ ¢ -U" such

that
(g = (XA +v™, YA -u™)

woTx - yoTy = woT(Xx + v¥™) - poT(YA - u™)
= (WOTX - oTY)x + woTy™ + yoTy™ > 0,

Q.E.D.

Theorem | Let DMUy, be DEA efficient. Then (x4, Yjo) Is @ nondominated solution of

(VP) associated with V™ x U*,

. X s R Nyt LI T L T L N G L L LT L P N N S A LI
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Proof: If (xjo, Yjo) Is not a nondominated solution of (VP) associated with v* x U¥,
then there exists (x,y) € T such that
(X, -9) € (Xjo, =Yjo) + (V", U™), (X, Q) = (x4, Yjo)
that Is, there exists (v", u™) € (v¥, U*), (v*, u*) =0 such that
; (X, =g) = (Xjo, =Yjo) + (V", u™)
Since DPUJO is DEA efficient, there exists an optimal solution
(w0, 40) € Int V x Int U such that
pngjo =1,
Wwe have
wolx - poly
- (wo'rxjo - pol‘glo) + (WoTy™ + polu")
¢ Wo"‘jo - POIUJO
as we shall see. For consides (v*T, u™T) = 0 and without 10ss of gencrality, suppose
v* = 0. Sincew® ¢ IntV,v* € V¥ and V Is acute, we have wolv™ <0, uolu™ < 0, which
suffices.
But by Lemma 1, we have
wOTx - MOTQZ WOTXJO - HOTQJO
. acontradiction.

Q.ED.

Theorem 2. Let (xy4, Y)o) be @ nondominated solution of (VP) assoclated with v x u*

and let Assumptton (A) hold (see Appendix). Then DMUJ0 {s DEA efficient.

Proof: Since S c T, the following system (1) is Inconsistent:

(XA, =YA) € (xyo, =yjo) * (V7, UMD, (XN, YA = (x40, y))
(1)
A e -K"

Now let us consider the pair of dual programming problems

E » oy g - maw . N AT A L A R A A TR AN A R AT AT TR ey TS R T W % W)
R O DUDOT T O N MO L M o™ 2 W O LA T X L X 1 [ W™ X )y TSR ERIRTT A & AN AM BN AR RA M e




rv,—, = min (wTxjq - uTyje)
(Pr< st. wiX-pTVek,
W-TE€V,

L u—'EGU.

.
Vg = max (tTs™ + tls*)

and

(D) < s.t. )?A—xjofs‘=0,
—?)uyjo*s*=0,
. Ac-K' s ec-V" stc-U"
where tcint V, tcint U,

4 First, we want to show Vg = 0. For an arbitrary feasible solution (A, 57, s*) of

(D), since s” c=V*, tcintV,s* ¢-U" tclintu, then

t's” 20, tls*» 0,

s0 V2 0. If Vi > 0, namely there exists an optimal solution (A9, sO7, s0*) of (D), such

that

Vg = tTs0™ + tTs0* > 0,

then we have

(XA0, -YA0)=(x g, -y o)*(~507,-50%), (-507,-50*)e(v™, U™), (507, 50%) ~ O

This yiclds a contradiction because (1) is inconsistent.

By the dual theorem (see Appendix, Th. 3), we have Vp = 0.

Secondly, let (w, 1) be an optimal solution of (P), and let

wo= w/whx, o = /7 wixj,

N e RN \ R e M A R Ay e e
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Then we have
Wor"jo = NOTUjo =1,
woTx - potTy e K
woet/wix+ VcintV (since teint V)
Woc t/wix+UcCIntU (sincet e intU)
Namely,

max U'U)() - HOIUW =1
wolx - poly ¢k,
WOl o = 1

wocinty, uOcintu

50 DMU,, 15 DEA efficient

QED.
Theorem 3 Let DMUy, be weak DEA efficient. Then (X}0. Yjo) Is @ nondominated

solution of (VP) associated with Int V™ x int U™

Its proof Is similar to Theorem 1

iheorem 4 Let (x4, Yyo) be @ nondominated solution of (VP) associated with Int V™ x Int U™,
and Assurnption (B) hold (see Appendix). Then DMU;o 1s weak DEA efficient.

Proof. Since (xy4 yj,) Is @ nordominated solution of (VP) associated with

Int V™ x Int U™, then the following system (1) 1S inconsistent.

(XX, =YA) € (x)o.myjo) + (Int V™, int U™)
ap
Ae-K

| R . - i m am t s~ PR A - - AWRAFRAF ALY I IS TS X TR “w " 2N 3% 4% 3%
RO adCn *n Loy S/ o SICANL LG o o e 2oy i, Vet le i P T Caxtte o B MY oL A RN e,



Constder the pair of dual programming problems

(\-lp = min (wWTxyo - pTye)
st. wiX-puTYek,
w-vey,
) (P)1< p-uely,

tTv+tTu=1,

L VEYV, uel.
and
r\7@=maxz

st. XA -xjo*s™=0,
(b){ YA+ y+st =0,
zt-s" eV’

zt-s* eu”,

_ rE-K sTe-V, ste-U"
where teintV, telntu.
Since 8;¢-K", j=1,...,n,then
(A, 57, 8%, 2) = (54, 0, 0, 0)
is a feasibie solution of (D), and
Vh=maxz20.
First, we have to show Vp = 0. If Vj > 0, there exists an optimal solution
(A0, 507, 50*, 20) of (D) such that
Vp=maxz=29>0.
Since V CE.M, then
Int V¥ = (w: wiv <0, vveVandv = 0).
Because of 20t > 0, we have

(-29t)Tv <O, forallve Vandv = 0.

.......



'a",‘i\‘
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-z%t e Int V",
Similarly we can show
-2t € Int U™,
Hence we have
-s0~ e V¥ - 20t cInt V",
-s0* e U" - 20t c Int U,
This yields a contradiction because (1) Is inconsistent.

By the dual theorem (see Appendix, Th. 4), we have Vp = Vg = 0.

Sccondly, let (w, 1, v, u) be an optimal solution of (P), then we have

wev+vcy,

peu+vucu
Since
w=v+v'" v*ev
p=us+u™™, u""eu
we have

tTw + €T = (cTv + €Te) + (eTv™*™ + eTu™™) 2 1.

So (w, 4) = 0. Since Vp = Vj = 0, then we get
‘;Vijo = uTyjo
Therefore w=0,p=0 Let

wo=w/wixj, WO =/ wixyg

we have

uOTgJog WOTXJO =1,
woTX - poTy ek,
woe v/wixjsveyv

uoe u/wixy, +UcU

d WAL AR TN %
UCH OO AU )




Namel;_,
max  pyjo = HoTyyo = |
st. wiX-uTYek,

<

wajo = I‘

L wev, peu
and wleV, p%eU. SoDMU,Is weak DEA efficient.

Q.E.D.
3. Efficlency Surface "Projection” and Existence of DEA Efficiency
For an arbitrary (xy4,Yjo) € S = {(xj, Yy, j=1,...,n}, we consider the
following programming problem:
C -
max (tls™ + tls*)
st XA -xjo+sT =0,
(PJo)< YA +ypp+st=0,

»*

L re-K¥, sTe-Vv*,s*c-U
wheret ¢ Int V, t € int U
Suppose (A9, s07, s0*) {s an optimal solution of (PJO). Let
X = XA0 = x;, - 807,
y= YN0 - Yjo * s0*.
we call (x, y) the “projection” of DMUIO onto the efficiency "surfacc” of the production
function (see (4], p 70).
It Is obvious that (x, y) € T. Since yjo € Int (-U™), s0* € - U”, we have
Y= yjo* Ot € Int(-UM.
Because O € Int (-U™), then we get y = 0. Therefore (x, y) = 0

Theorem 5. The projection (x, y) of DMUjo Is @ nondominated solution of the (VP)

assoclated with V™ x U*.

12
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Proof. Suppose (x, §) s nct a nondominated solution of (VP) assoctated with V* x U™,
Then there exists (X, g) € T and (v, u) € (V*, U™) such that
X @ =, P+ v,0, v,0)=0

Since (x, §) € T, there exists A € - K™ and (v, u) € (V¥, U*)

such that
(x, ) = (XA, YA) + (-v, W
50 we have
(XA, YA) = (X, Q)+ (v+Vv, U+ W e (x-y+ V", U") (1)
and

(Vv+v,u+uw=0 (2)

(In fact, If (v +v, U+ 0) = 0, we would have (v, u) = (v, -u) € (V*, U*)

Since (v, U) = 0, without loss of generality, let v = 0. Then we have v = -v ¢ V™. This
ylelds a contradiction to v™ (1(-v™) = (0}).
Let
vi=v+ueVv", u"=0+ueU™
By (1) and (2), we have
(XA, -YA) = (x, -@) + (v™, u™), ™, u") =0

S0
XA =X+ V" = x50 =807 + V7,
SYA =g+ Ut = -y - 8Ot U™
Then we get.

XN+ (507 = v™) = x,
YA ¢ (50 - u™) = -y,
Ae-K", sO0--v¥e-v" s0t-y*e-ut
Further, since teintV, v eVv®, telinty, u" eU", wehave

tTv® <0, tTu™ < 0.

Al
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We know that (v*, u™) =0, so

tTv™ + tTy™ <.
Thus

tT(s0™ - v¥)+ tT(s0* - u™)

= (tTs07 + ¢tTs0%) - (tTv™ + tTu™)

> tTs0- + ¢Tso,
This contradicts the fact that (A0, s0-, s0%) is an optimal solution of (Pi0). Thus (x, Q)
is a nondominated solution of (VP) associated with V™ x U*.

Q.ED.

Corollary 1. Let

(Xp+1s Yney) = (X, Q)
where (x, ) IS the projection of DMUjo. Then DMU,. 1s DEA efficient.

Proof: By Theorem | and Theorem 2, DEA efficiency and nondominated solution of (VP)

are cquivalent properties.

Q.E.D.
Theorem 6 Suppose
(1) Forarbitrary A = (Ay, Ay, ..., AT € - K®, we have
MVI VY, AUt cUY, j=1,2,0000
where
MVT =T vE e VI A UT = (Ut e U™y
(1) For arbitrary Al =(A L Aol ., ANTe-K", 1=0,1,...,n,
we have
n n n
AL A2, AM A0 = T A KA, T AN, ..., T A KA O)e - KT
k=1 k=1 k=1

Then there exists at least one DMU;, (1 < j, < n) which is DEA efficient.




Proof:. By Theorem 1 and Theorem 2, it is only necessary to show that there exists some

(X0, Yjo) € Ssuch that it Is a nondominated solution of (VP) assoclated with V¥ x U™
Suppose for an arbitrary § (j=1,...,n), (xJ, yy) Is not a nondominated
solution of (VP) assocfated with V™ x U™, then there exist (xj, y;) € T and P e-k*
such that
xp, gpe XX, ¥adye v, u") (3)
and
(xg, ~gpPelxg, -ypP+(V*, U™, (xp ypd= (g j=1,2,...0 (4)

By (3), there exist ¥ € V¥, (e U™ such that
g gp - AL VR e -3, (3)

By (4), there exist v € V", u e U™ such that
(xp yp) = gy + (v, -uhy, oy = 0 (4
By Theorem 5, there exists A% € -K*, A% = 0 such that
(%, ) = (X A9, ¥ AO) (S)
is a nondominated solution of (VP).

Multiplying (4) by A4° and summing over J, we get

TN (e ) (0
2 )—(J>\Jo 2 XJ)\JO 2 Vj)\jo
j=1 J=1 j=1
n n n
2 gj}‘jc b3 QJAJO -2 J}\Jo
= J! . Ll_,‘ w,

namely,
) LA
)-()\0 2 Vj)\Jo
]=1
= + (6)
n
-¥A0 > W

1 010t 00 3 Vi ¥ 2 MV 5 1y A S AN R Q'}?}J



e
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By (6), (5) and assumption (1), we have
(
CY ) D 0
2 XJ}\JO X 2 Vj}\Jo X V~
=) =]
J = + J € + (7)
n _ . n )
-2 gj)\j° -y b3 J)\Jo -y U
\121 Yy, \.. / \FI J . \ J
By (3°), we h;ve ~ =
n n n
2 *J)\Jo Z 2 X 5\ K- VK AKO
j=1 K=1\j=1
n n n
2 l_.)J)\jo 2 2 g])\]K + UK >‘K
J=1 K 1\ =1
" p 7
n n Kn j
J=1 \K=1 | K=1
n n _ n
b2 z AJKAKO UJ b3 UK)\KO
7\t \K=|

By assumption (1), we have

n n n
b3 A|K)\K°, 2 }\2K}\K°, S, z ;\nKkKo I ¢ ‘K.
=| K=} K=1

By assumption (1), we have

n n
I VKA € VT, T uKaO e U”
K=1 K=1
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SO we get rn N

eT (8)

I
=0 (9)

infact, if

(7? \r"A7
J=1
(10)

n

z dhp
J

§=1
\
by (vl o) = 0, J=},...,n, and A0 > O, without loss of generality, lct A]- * 0 and

\) > 0. Then by (10), we have
2 V1>\l° = - \;'Al'o =0
1%y

By assumption (1), we get
virpoevine-vh

a contradiction.
By (7), (8) and (9), we get a contradiction to (x, y) Is a nondominated solution

of (VF} associated with V™ x U™

! »':"'."“‘
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Appendix

Consider the following pair of dual programming problems

(P){ min cTx

st. Ax-beK
and
max y'Tb
(D)4 st ylA-cT=0
ye-K"

where Aisan m xn matrix, b€ EM, c € EN, KCEM is aclosed convex conc and
Int K= O (let KO = Int K).
Let (see [13], [14) and (15D
R={x: Ax-beK)
KO, 2) = (z -0z z€KO, 20}, zcK

TR, x)={z: IxKeR and ax> 0, suchthat Hm alxK - x) = 2}
K roo

LX) ={z. AZeT (K3, AXx-b))
LO(x) = Int L(x)
D(x) = (-Aly: y e -K", yT(Ax - b) = 0}
where x cR.
It is easy to establish the following lemma:
Lemma I.
(1) 1(K9, 2) is an open convex cone.
(11) L(x) 1s a closed convex cone.
(111) D(x) Is 2 convex cone.
Lemma 2. 1*(Ko, 2)={y yeK", yTz=0)

Proof: Letye™(KO, 2), then for arbitrary z € KOand a 2 O we have

y(z-az2)50 (")
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Let a =0, weget
y'2¢0, VY zeKo.
namely, y € (K9™ = K",
Since zZ €K, we have yTz<0. By(*), weget yTz20,s0 yfz=0.
Therefore
1"(KO, 2) c {y: yeK"™, yTz=0)

Let ye{y yeK", yTz=0). Then for arbitrary z € KO, a 20, we have

yliz-a2)
- yTz-ay'z
- y'z
<0,
S0
y €1"(Ko, 2).
Therefore
{y yek” yTz=0) c ™K, 2)
QED. ‘
Lemma 3. ;
(1) L(x) = D*(x). :
(1) If D(x) Is closed, then L™(x) = D(x). .
Proof: i
(1) Let z € D"(x), then for an arbitrary i

y € 1"(KO, Ax - b) = {y. yeK", yT(Ax - b) = 0},
we have -AT(-y) € D(x), hence
(A2)Ty = 2T(-AT(-y)) < 0. "

Therefore

Az € (1"(KO, Ax - b)™ =1 (KO, Ax - b).

- e e T T T

-~

13 K o 1 ) N ' »
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Namely,

D™(X) © L(X).
Now, let z € L(x), l.e.
Az € 1(KO, AX - b).
. Then for arbitrary y satsifying
ye-K*, yT(Ax-b)=0
we have
2T(-ATY) = (ADT (-y) 5 O
(Since 17(KO, Ax - b) = {y: ye K*, yl(Ax - b) = 0}, s0 -y e 1*(KO, Ax - b)) Since

-Aly c D(x), we get  z € D™(x), namely
L(x) € D*(x).
(11) Since D(x) Is a closed convex cone, from (i) we have
L™(x) = D" ™ (x) = D(x).
QED

Lemma 4. T(R, x) € L(x).

Proof: For an arbitrary z € T(R, x), there exist xK ¢ R and g > O such that

Hm o o(xK - x) =2z,
K-+oo

From AxK -b e KandK? = 0 we know that there exists (y<.2) c KO such that

Hm yKik = AxK - p,

D_*oo

Because YKL e KO and ay > O we have

a(yk:d - (AXK - b)) € | (KO, Ax - b).

Let £ - oo, we get
a(AxK = b) = a(Ax - b) € 1(KO, Ax - b).

But
Aag(xK - x) = ag(AxK - b) - ag(Ax - b).

ORI 3 ” L OL - TR AR O " T \ 0
RS Ot S OMC A SACAL I S G 'h‘a T e e .h‘..' haN J S R R e i s i T et Pt LG
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Thus
Aag(xK - x) € T(KS, AX - b).
Let K~ oo, we have
Az € I(KS, AX - b),
namely
T(R, x) € L(X)
i QED

Lemma 5. L9%x) c T(R, x).

Proof: Since KO = 0, it Is easy to show that

Lo(x) = {z. Az c (KO, Ax - b)}.

For an arbitrary z < LO(x), there exist u e K9, a 20 such that
Az = u - a(Ax - b).

Case (i), a=0. For an arbitrary g 2 O, we have

Alx + BZ) - b

i

(Ax - b) + BAZ

"

(Ax - b) + puc K (because x € R and u ¢ KO),

Take (Bk) satisfying

B1>By>...20, lim B =0.

K~oo
Lot
xK=x+pez, o= 1 Bk,

wehave xKeR, 1im xK=x, ax>0and

Koo

Z = ay(xK - x).

Therefore

z € T(R, X).




Case (i1), a> 0. For an arbitraryp e [0, | / a] we have
Alx + B2) - b
= AX - b + BAZ
= (AX -~ b) + B(u - a(Ax - b))
. = (1 - apXAx - b) + pue K (because x € R, u ¢ KO).

Take (B} satisfying 1 /a 28;>B5>...>0, lim g =0.

Koo

Let

XK = x + Bz, ak = 1 Bk

we have XK cR, ag>0, lim xK=x and z = ax(xK - x)
Ktm

Therefore
2 € T(R, x).
QED
Theorem 1. (Weak Duality Theorem) Let x be a feasible solution of (P), ybe a
fecasible solution of (D). Then
cTx 2 yTb.

Proof.  Since Ax - b cK, there exists ucK suchthat Ax = b+ y, hence

clx =yl Ax
= yl(b+w)
2y’
QED
Lemma 6. Let x € R be an optimal solution of (P). Then
-c € TYR, x).
Proof. It Is only necessary to show

c1z20, forvze T(R, x).

Now for an arbitrary z € T(R, x), there exist (xK}) c R, ay > 0and lim xK = x
K-rou




such that

Hm og(xK - x) = z.
K= o0

Since x s an optimal solution of (P), we have
cT op(xK = x) = a(cTxK - ¢Tx) 2 0.
Let k-oo, we have
clz20
QED.
Lemma 7. Let x € R be an optimal solution of (P) and let D(x) be a closed set. Then
-¢c € D(x).

Proof. From Lemma 3, Lemma 4 and Lemma 5 we get

Lo(x) € T(R, x) < L(x) = D™ (x),
hence
L¥(x) = (LOOxN™ o T*(R, x) D L™(x) = D" ™(x) - D(x),
Thus
L™(x) = TY(R, x) = D(x).
From Lemma 6, we get
-¢ ¢ D(x).
QED
Theorem 2. (Dual Theorem) Let x € R be an optimal solution of (P) and let D(x) be
aclosed set. Then (D) has an optimal solution y, andc'x = y'b.
Proof. Bylemma 6, we have
-c € D(x).
Namely, there exists y € EM such that
ye-K",
yT(Ax - b) = 0,

-c = - Aly.




Therefore
Ax - Db €K,
uTA-cT=0, ye-K”
and
cTx=yTAx = yTb.
By Theorem 1, y Is an optimal solution of (D), and

cTx = yTb.

QE.D.

Note: Take K=E,M (namely, (P) and (D) are linear programming problems). Let

= {t a')}:b', ls‘sm),

then
D(x) ={Z yiajl: yj 20, i€ l} ,

i€l
where

A’(al‘aQ,..., am), b=(b‘,b2,..., bm)

It s casy to show that D(x) is a closed set.

Let us consider the following pair of dual programs:

- ,
min (w‘xlo—pngo)
(P)< st wiXx-plyek

w-teV

L pH-teu

and

max (tTs™ + tTs*)
(D)q st XA-xjo+s7 =0

Y 4ytst=0

»* »

, sTe-U.

& ANe-K*, ste-vV
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Let (A9, s07, s0*) be a feasible solution of (D) and
Tw-¥Tpey, yy €K, yp eV, yseu
D (AO‘ SO" so*) .T W+ g2 . ngAO = ngSO‘ = QJTSO’ = 0&
H*+ys
. J

Assumption (A)  D(A9, sO-, s°*) {s a closed set.

1 Theorem 3 Let (A0, s0~, s0*) be an optimal solution of (D) and et Assumption (A) hold
Then (P) has an optimal solution (w9, po), and
Worxjo - porgjo = ¢tTg0- 4 ¢Tg0*,
Proof  Since the dual of (D) ts (P), and Assumption (A) holds. By Theorem 2, we can
get the results.
QED
Now lct us consider the following pair of dual programs.
(min (wij0 - pTgJo)
st.  wiX-uT¥ek
(P < wW-vev

pH-ueu

tTv+tTu=1
L vVEV, uel
: and
. max z
st. XA-Xj,+s7=0
(D) < VA + Y+ 5* =0
2zt-s"eV”

zt-s*ey”

K rAe-K" s e-v* s e-y"




D (A0, sO-, 50*, 20) =4

Let (A0, s0-, sO%, 20) be a fea?Jble solution o{ (0) and

&Tw-VTu+gl
W=-V+iys

Bp-u+ys

L tTv+tlu

.

Assumption (B): D(A9, s0-, sO*, 29) is a closed set.
Theorem 4. Let (A9, s0-, sO*, 20) be an optimal solutfon of (D), and let Assumption (B)

hold. Then (P) has an optimal solution (w9, o, vo, u°) and

wOijo - pOl'yJo = 70,

It is similar to the proof of Theorem 3.

ve-V,ue-U

Ui €K, Y€V, yseu

vI(z20t - s07) =0

uT(sOt - s9*) =0

g'T}\O = g2T50' = g3TsO’ = (y
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